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The investigation of non-self-similar gas motions which result from the
propagation of spherical, cylindrical and plane shock waves through the
gas requires complicated and cumbersome calculations, In a few cases
these have actually been carried out, e.g. on the problem of point ex-
plosion [1].

In [2-4 ] an approximate method of calculation of such motions 1s
given, valid for a high gas density jump across the shock wave, i.e. for
the propagation of shock waves of large intensity in a gas. This method
is based on the representation of gasdynamical quantities in the form of
series in a special form for the powers of parameter ¢, which character-
izes the ratio of the gas density in front of the wave to the gas
density behind the wave, The successive terms of the series are found
from the equations by means of quadratures. When only the two first
terms of the series are taken into account, the gas parameters in a dis-
turbed region behind the shock wave are expressed in terms of the func-
tion R*(t) in [4 ], which treats of the law of propagation of a shock
wave. For the determination of this function in the problems of motion
resulting from the explosion in a gas and from the expansion of a movable
boundary (piston) in a gas, a law of conservation of energy in integral
form may be used, pertaining to the whole of the region of disturbed gas
motion {3 ].

The total energy of a moving gas (the sum of its internal and kinetic
energies) at each instant must equal the sum of the energy E which was
generated by the explosion, the initial energy of the gas affected by the
motion and the work done by the piston. Taking the expression (y - 1)~!p/p
to be the internal energy per unit mass of a gas (where p is the pressure,
p the density, y the ratio of specific heats), we obtain
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where v* — +* is the volume occupied by the moving gas, v is the volume
displaced by the piston, p, is the initial gas pressure, p°® is the
pressure on the piston, dR/dt is the velocity of gas particles and t is
the time.

To use this integral relationship along with the representation of
the desired quantities R, p and p in the form of a series in powers of ¢,
we shall also represent the function R*(t) which gives the law of pro-
pagation of a shock wave in the form of a series (in analogy to what has
been done in [51) for the function which determines the form of a bow
shock wave for the steady flow past a body. We shall also follow the
method of Liubimov used for the case of non-stationary one-dimensional
motions*

R (t)=Ro(t) +s Ry (¢ + . .

Substituting series for R, p and p in Eq. (1) and equating the temms
on the right with the terms on the left for the same powers of ¢, after
sppropriate transformations, we obtain a sequence of ordinary differen-
tial equations for the determination of functions Ry, R,, etc.

As will be shown below, by proper choice of the main terms in the ex-
pensions of the quantities dR/dt and p in powers of ¢, we can obtain a
satisfactorily accurate first spproximation for the determination of the
law of propagation of a shock wave (and evidently all parameters of the
stream immediately behind it) and the pressure acting on the piston.

In accordance with the results of [4] let
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where p, is the initial gas density, m is the Lagrange coordinate which
is introduced by the relation da = p,r’~ 'dr, where r is the initial

* Liubimov, G.L. Method of solution of problems in gas dynamics and
magneto-hydrodynamics of the tlows with strong shock waves.
Dissertation. MGU, 1958,
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coordinate of a particle, » = 1, 2, 3 correspond respectively to the
flows with plane, cylindrical and spherical waves. The main terms are
chosen such that in the case where Ry(t) is the law of propagation of a
shock wave, they will yield exact values of the corresponding quantities
immediately behind the shock wave, i.e. for a = leo"/v.

After substitution of the expressions for dR/dt and p into the inte-
gral relationship (1) for the determination of functions Ry(t) we obtain
the following equation (index 0 is subsequently omitted):
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For simplicity it is assumed that at the start the gas occupies all
space.

We shall evaluate the accuracy of determination of functions R(t) and
p° from Equation (2) by comparing the solutions of this equation with
the known exact solutions of problems on self-similar gas motions.

1. Impulsive motion of piston. Let
R° ="t

(n # -1). For n # 0 the motion is self-similar only under the condition
that a;, = 0,i.e. only as long as the shock wave may be considered to be
strong. Assuming E = 0 and takmg R(0) = 0 from Equation (2) we find
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where x is the ratio of the volune displaced by the piston to the volume
bounded by the shock wave and p* is the gas pressure immediately after
the shock wave:
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It is interesting that in the approximation under consideration the
values x and f° /p* do not depend upon each of the parameters n and »
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separately, but only upon their combination 9. Graphs of these functions
for y = 1.4, i.e. fore = (y ~ 1)/(y + 1) are represented in Fig. 1.

g o — 2
! |
e L
g
7
&5 s —1d
V'Joz

o |LIUEF

In this figure are represented the values y and p°/p*, obtained as the
results of numerical integration of corresponding exact solutions for

v = 2 (hollow squares, 3[6]) and for v = 3 (hollow circles, 1[71);
for v = 1 and n = 0 the approximate values, predicated upon the choice
of the main terms in the ¢ -expansions, coincide with the exact values
(hollow triangles, 6); for v = 1 and n # 0 the results of exact calcula-
tions are not available. Half-shaded symbols 2, 5, 7 for 9 -1 corres-
pond to the exact solution of the problem of a strong explosion [8].
Finally, the black squares 4 correspond to the values obtained for the
exact solution of the problem with a cylindrical piston (v = 2), expand-
ing according to the indicated law.* This case may be considered as the
limiting case of impulsive piston expansion for n -+ =.

Fig. 1 shows that in all the cases enumerated approximate solutions
for ¢ = 1/6, have a quite satisfactory accuracy.

2. Expansion of piston with constant velocity. If R°= UT,
then the motion will be progressive also for a, # 0. Substitution of this
expression for R® into Equation (2) for E = 0 leads to the relations

where R=Dt
B =il %) S

* These values were obtained by V.N. Gusev [9].
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For v = 1 these relations are exact; their curves for y = 1.4 are re-
presented in Fig. 2 by solid lines. For v = 2 and v = 3 these relations
are only of approximate validity; relations obtained for v = 3 and y =
1.405 by numerical integration of exact equations [8,10], are represent-
ed in this figure by the dashed line. For v = 3 approximate expressions
retain satisfactory accuracy up to the values a,/D ~ 0.4 0.5, which
corresponds to £ ~0.3-:0.35 and up to pressure ratios in the shock
wave of the order 5-7,
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3. Strong explosion. Assuming in Equation (2) R°= 0, p, =0,
E £ 0 and presuming R(0) = 0, we find

R = (E)mt?ﬁ

ap:
where
_ 4[m (v—1)+3,) 6y —q*—1 »° 3—q
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Figure 3 shows the curves of the approximate functions obtained for
the quantities p°/p* and

R 5 20
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and y functions, and the exact values of these quantities [8] for

v=1 2, 3,
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From Fig. 3 it follows that in the case of the solution of the problem
of the strong explosion, the approximate expressions for R and p° satis-
factorily agree with the exact expressions up to the values ¥~ 1.6+
1.8, i.e. up to the values € ~0.25-+-0.30. (Note that the relative
error in the determination of R 1s v + 2 times smaller that the differ-
ence corresponding to the quantity z between the exact and the approxi-
mate values z in Fig. 3.)

Thus, the examples presented of comparison of the approximate and
exact solutions support the conclusion that the functions R(t) and p°(t),
determined by Equation 2, retain a satisfactory accuracy up to the values
e~ 0.20—+0.30..

Equation (2) allows the computation of any non-self-similar motions
resulting from an explosion and from the expansion of a piston (the equa-
tion is easily modified for the cases when the initial volume of a piston
is different from zero), provided the intensity of the resulting shock
waves is sufficiently large, so that ¢ does not exceed 0.2-0.3.

In particular, using the law of plane cross-sections, in solving this
equation one may determine the form of a shock wave, which is created
by the flow past a profile (v = 1) or a body of revolution (v = 2) of a
gas with large supersonic velocity. The pressure distribution on the
surfaces of these bodies may likewise be determined, even in the cases
when the front part is somewhat blunt [9].
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