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The investlgatlon of non-self-similar gas motions which result from the 
propagation of spherical, cyllndrlcal and plane shock waves through the 
gas requires complicated and cumbersome calcalatlons. In a few cases 
these have actually been carried out, e.g. on the problem of Point ex- 
plosion 11 I. 

In 12-4 ] an approximate method of calculation of such motions is 
given. valid for a high gas den8itY jump across the shock wave, Le. for 

the propagation of shock waves of large lntensitr in a gas. This method 
is based on the representation of gasdrnamical quantltles in the form of 
series in a special form for the powers of parameter c, which character- 

izes the ratio of the gas density in front of the wave to the gas 
densitr‘behind the wave. The successive terms of the series are found 
from the equations bY means of quadratares. Vhen only the two first 
terms of the series are taken into account, the gas parameters In a dis- 
turbed region behind the shock wave are expressed in terms of the func- 
tion R*(t) In [4 1. which treats of the law of propagation of a shock 
wave. For the determination of this function in the problems of motion 
resulting from the explosion in a gas and from the expansion of a movable 
boundary (piston) in a gas, a law of conservation of energy In Integral 
form may be used, pertaining to the whole of the region of disturbed gas 
motion [ 3 I. 

‘he total energy of a moving gas (the sum of its internal and kinetic 
energies) at each instant aust equal the s= of the energy B w&h was 
generated by the explosiou, the initial energy of the gas affected by the 
motion and the work done by the piston. Taking the expression Cy - l)“p/p 
to be the internal energy per unit mass of a gas (where p is the pressure, 
p the density, y the ratio of specific heats), we obtain 
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whereu+-tP istherolme occupiedby theaminggaa, tp is the rolmm 
displaced by the piston, p 
preaaure on the piston, 3B at j 

is the initial gas pressure, p” is the 
is the velocity of gas particles aud t is 

thetime. 

To uae this integral relationship along with the representation of 
the desired qutmtitiea R, p md p in the form of a series in pouera of c, 
re ahall alao repnaaat the fmctionR*(t) which gives the law of pro- 
pqation of a ahoch wave in the foam of a series (ia aualogy to what haa 
bean dme in1511 for the fuuctiou ahichdaterminea the fonnof abow 
ahoch wave for the steady flow past a body. We shall alao follow the 
method of Liubimov uaed for the case of non-stationary one-dimanaioaal 
motions+ 

Substituting aariea for R, p Imd p in 4. (1) and equatirq the terma 
on the right with the terms on the left for the smoa pouora of E, after 
apprquiatetranaformaticna, = obtain a sequence of ordinary differen- 
tial equatiixw for the determination of fuacticnaRa, R,, etc. 

Aa uillba ~~CWIB balou, by proper choice of themainterma in tha ex- 
pansiona oftha qumtitiaadR/dt mdp inpamra oft, m3 can obtain a 
satisfactorily accurate first approximation for the determination of the 
larr of propagation of a ahoch xava (md evidently all parmters of the 
atrea Wiately bahind it) and tha praaaure acting cn the pistan. 

In accordact with tha reaulta ofC4 1 let 

afl-2 fi 
at --r+f e ( -F) + 0 (8) 

(# 

(a+ F) 
. . . . 

P=PlfT+ PlW---413 + Pl? -& n + O(e) 

rhere p1 is tk initial gas density, a is the JAgrange coordinate which 
is introduced by the relatim dm=p,P”dr, where f is the initial 

’ Liublmor, 6.L. Method of aolutlon of problaea ia gas dmmmica and 
magneto-hjdrodymuicra of the floua with strong a&mk wavea. 
DiaSSrtStiOB. MU. 1968. 
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coordinate of a particle, Y = 1, 2, 3 correspond respectively to the 
flows with plane, cylindrical and spherical waves. lhe main terms are 
chosen such that in the case where R,(t) is the law of propagation of a 
shock wave, they will yield exact values of the corresponding quantities 
istsediately behind the shock wave, i.e. for s = p lRO”/~. 

After substitution of the expressions for aR/dt and p into the inte- 
gral relationship (1) for the determination of functions R,(t 1 we obtain 
the following equation (index 0 is subsequently omitted): 

where . . 

P” = Pl -t +&La,“)+Jq 
0 = 2 [x (v - i) + 6l”], 81, = 1, 61, = 61, = 0 

For simplicity it is assumed that at the start the gas occupies all 
space. 

We shall evaluate the accuracy of determination of functions R(t) and 
p” from Equation (2) by canparing the solutions of this equation with 
the known exact solutions of problems on self-similar gas motions. 

1. Impulsive motion of piston. Let 

(n f -1). For n f 0 the motion is self-similar only under the condition 
that al = 0, i.e. only as long as the shock wave may be considered to be 
strong. Assuning E = 0 and taking R(O) = 0 from Equation (2) we find 

R=&,&)W, -&1+7+ (8=-&J 
P 

where x is the ratio of the volune displaced by the piston to the volume 
bounded by the shock wave and p+ is the gas pressure invnediately after 
the shock wave: 

It is interesting that in the approximation under consideration the 
values x and #‘/p+ do not depend upon each of the parameters n and v 
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separately, but only upon their combination 9. Graphs of these functions 
for y = 1.4, i.e. for c = (y - l>/<y + 1) are represented in Fig. 1. 

FIG. 1. 

In this figure are represented the values x and p” /p’, obtained as the 
results of numerical integration of corresponding exact solutions for 
v = 2 (hollow squares, 3 [6 I) and for Y = 3 (hollow circles, 117 I); 
for v = landn = 0 the approximate values, predicated upon the choice 
of the main terms in the c-expansions , coincide with the exact values 
(hollow triangles, 61; for Y - 1 and n f 0 the results of exact calcula- 
tions are not available. Half-sheded symbols 2, 5, 7 for 8 -1 corres- 
pond to the exact solution of the problem of a strong explosion [8 1. 
Finally, the black squares 4 correspond to the values obtained for the 
exact solution of the problem with a cylindrical piston (u = 21, expand- 
ing according to the indicated law.* This case may be considered as the 
limiting case of inpulsive piston expansion for n + 00. 

Fig. 1 shows that in all the cases en-rated approximate solutions 
for c = l/6, have a quite satisfactory accuracy. 

2. Expansion of piston with constant velocity. If R” = UT, 
then the motion will he progressive also for a1 f 0. Substitution of this 
expression for R" into Equation (21 for E = 0 leads to the relations 

where 
R = Dt 

l These values were obtained by V.N. Gneev [ 9 1 . 
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For v = 1 these relations are exact; their curves for y = 1.4 are re- 
presented in Fig. 2 by solid lines. For v = 2 and v = 3 these relations 
are only of spproximate validity; relations obtained for v = 3 and y = 
1.405 by numerical integration of exact equations 18,lO I, are represent- 
ed in this figure by the dashed line. For v = 3 approximate expressions 
retain satisfactory accuracy up to the values aI/ D- 0.4+-0.5,which 
corresponds to E-0.3e0.35 and up to pressure ratios in the shock 
wave of the order 5- 7. 

FIG. 2. 

0 0231 am & 

FIG. 3. 

3. Strong explosion. Assuming in Equation (2) RO= 0, p1 F: 0, 
EC 0 and presuming R(O) = 0, we find 

where 

4 ix (“s;;;; Bag] 67 - 7’ - i 0 
a= 3-7 

(7--)(7+1)*’ $=7 

Figure 3 shows the curves of the approximate functions obtained for 
the quantities #‘/p* and 

R”+2 p1 20 
z = - B Y (v + 2)4 ia 

and y functions, 
v = 1, 2, 3. 

and the exact values of these quantities [ 8 1 for 
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From Fig. 3 it follows that in the case of the soluticm of the problem 
of the strong explosion, the approximate expressions for R and J+’ satis- 
factorily agree with the exact expressions up to the values 7% 1.6 + 
1.8, i.e. up t0 the values E - 0.25+ 0.30, (Note that the relative 
error in the determination of R is Y + 2 times smaller that the differ- 
ence corresponding to the quantity z between the exact and the approxi- 
mate values z in Fig. 3.1 

‘lhus, the examples presented of comparison of the approximate and 
exact solutions support the conclusion that the functions R(t) and p”(t), 
determined by Equation 2, retain a satisfactory accuracy up to the values 
E-0.20+0.30.. 

Eguation (2) allows the mutation of any non-self-similar motions 
resulting from sn explosion and fram the expansion of a piston (the equa- 
tion is easily modified for the cases when the initial volume of a piston 
is different from zero), provided the intensity of the resulting shock 
waves is sufficiently large, so that E does not exceed 0.2-0.3. 

In particular, using the law of plane cross-sections, in solving this 
equation one may determine the form of a shock wave, which is created 
by the flow past a profile (u = 1) or a body of revolutian (v = 2) of a 
gas with large supersonic velocity. ‘lbe pressure distribution on the 
surfaces of these bodies may likewise be determined, even in the cases 
when the front part is somewhat blunt I9 1. 
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